m Christmas Lectures 2008

Get it sorted!

Computer programmers write algorithms on how to accomplish all the different
things a computer needs to do. Computers constantly sort items into order.

For example, every time you check your list of emails by date received or scan
through your MP3 tracks alphabetically, the computer uses an algorithm to sort

the items into that order. Just as there are different recipes for baking a carrot cake,
there are lots of different algorithms that a computer can use to do the same thing
(for example, sorting numbers into ascending or descending order). The difference is
that some algorithms work faster or require less computer memory

to run than others.

Here we’ll show you how to try two different algorithms to sort numbers.
You can race the algorithms against each other in teams with your friends at
home or at school!

Ri The Royal Institution Megosoft

of Great Britain Resea I'Ch 1




m Christmas Lectures 2008

Get it sorted!

BubbleSort and QuickSort are both sorting algorithms that you can try out either one
after the other or in a race against each other. Count how many steps each algorithm
uses to sort your list of numbers. Which algorithm uses fewer steps and is therefore
more efficient? Which one can sort the list of numbers the fastest?

To run both algorithms you need to number each team member from 1 upwards. Write
the numbers on A4 sheets and give one to each team member. One person needs to act
as team controller. They operate the algorithm and actually sort the numbered people
into ascending order. The numbered team members represent the computer data and
the team controller the processor running the software using the data.

BubbleSort is easy to understand and program a computer with. To try the
BubbleSort algorithm, line the team up shoulder to shoulder facing the controller.
Shuffle the numbered sheets (to put the data into a random order) and then hand
one to each person in the line. Ask everybody to hold their number up so that the
controller can see it.

1. The controller starts at their left-hand side of the line of data. They look at the
first two numbers, if the larger number is on the left the two numbers need to be
swapped. The two people move so that the smaller number is on the controller’s
left and the bigger number on the right. If the larger number is already on the
right then the people stay in place in the line.

2. The controller then takes one step to the right and looks at the next pair of
numbers (i.e. the rightmost number from before is now the leftmost one
of the pair and a new number is the right of the pair). The controller repeats
step 1: swap the two numbers if the larger one is on the left otherwise leave
them alone.

3. The controller continues like this all the way along the line, swapping pairs of
numbers if necessary. Once they reach the right-hand end of the line they run
back to the beginning and start moving along it again. Each time the controller
moves along the line the numbers get steadily more organised. When the
controller can walk all the way along the line without making any swaps the
numbers are in ascending order and BubbleSort has finished!



m Christmas Lectures 2008

Get it sorted!

QuickSort can be faster than BubbleSort, but is more complicated and uses more
computer memory to run. To try the QuickSort algorithm, again get the team to line
up shoulder to shoulder facing the controller, shuffle the numbered sheets to
randomise the data and then hand one to each team member.

1. The controller picks a random person in the list and asks them to put one hand
on their head. This number is the pivot (like the middle of a see-saw). Then the
controller walks along the numbers from their left to right and tells anyone
whose number is lower than the pivot number to move to the left of the pivot
(from the point of view of the controller) and anyone who is higher to stand on
the right of the pivot. When the numbered people move they are not allowed to
arrange themselves into order — they must stand wherever they arrive. At the end
of this step you should have a line of numbers with the pivot somewhere in the
middle (but don’t worry if there aren’t any numbers to the left or right of the
pivot — the controller may have picked the smallest or biggest number to be the
pivot). The pivot number must keep their hand on their head so that the
controller knows they have already acted as a pivot.

2. Now the numbers to the left and the numbers to the right of the pivot form two
different groups. For both groups the controller picks a new pivot number. These
two pivots put their hand on their head, and again within each of the subgroups
the controller tells numbers to move to the left or right of their group’s pivot.
Also, all of the pivots must keep their hand on their head afterwards.

3. This process is repeated with smaller and smaller groups. When all of the
numbered people have their hand on their head QuickSort has finished. If the
controller has sorted them properly, the list should be in ascending order.

Now that you’ve tried both methods:

What did you find? Which algorithm was faster: BubbleSort or QuickSort?
Despite its name, QuickSort is not always faster than BubbleSort. BubbleSort can
order a handful of numbers in just a few passes whereas QuickSort might take

longer because it needs a bit more reorganising of the numbers. But for longer lists
of data QuickSort becomes much faster than BubbleSort.



m Christmas Lectures 2008

Get it sorted!

When you’ve run both sorting algorithms with numbers, try seeing how they work
on other data. Get each team member to write their name on their sheet of paper,
ask them to line up in random order and then use both algorithms to sort them into
alphabetical order. You can also use BubbleSort and QuickSort on other data, for
example, increasing order of height or decreasing order by age. Also, how would
you adapt the two algorithms to sort numbers into descending order?

Now, let’s take a look at a different approach to ordering data, called a sorting
network.

The main reason why both of these algorithms take a while to sort even a short list
of numbers is because the controller can only do one thing at a time. For example,
in the BubbleSort algorithm the controller can only look at one pair of numbers at
each step before moving onto the next pair. Exactly the same is true of computers —
a lot of the time the processor just sits around waiting for one function to finish
before it can move on. So why not speed it up by letting it calculate more than one
thing at a time? This idea is called parallel processing. The computer breaks up jobs
into lots of little tasks so that many of them can be done at the same time by
multiple computer chips. Sorting algorithms can be turned into parallel processing
using a sorting network.

The diagram on the last page shows a network that operates like a parallel
processing version of BubbleSort for quickly sorting six numbers. The numbers are
placed in random order in the squares at the start. Each number moves along to the
next column on the right, following the arrows. At each circle, two numbers meet
and are compared with each other. The smaller number moves left (up the page)
and the larger number moves right (down the page). By the time the numbers reach
the right-hand side of the network they will have been sorted into ascending order.



m Christmas Lectures 2008

Get it sorted!

To try this for yourself: print or copy the sorting network. Number squares of paper
1-6 and place them in random order one number to each square on the left. Now
push the numbers through the network of comparison circles, following the rules
outlined above.

Why not ask your teacher if you can do this on a larger scale at school?

Find some chalk or masking tape and copy the sorting network on the playground
or classroom floor. Number six A4 sheets and give one to each person.

Now get each person to walk through the giant-size sorting network.

CS Unplugged

View a video of a sorting network being run at a school:

http://csunplugged.org/index.php/en/videos-mainmenu-139


http://csunplugged.org/index.php/en/videos-mainmenu-139

m Christmas Lectures 2008

Get it sorted!

Try racing the sorting network against the BubbleSort and QuickSort algorithms —
which is fastest?

The reason that this network is so quick at sorting numbers is that at each step
three (rather than one) comparisons are made at the same time.

Why not try this sorting network for organising people into alphabetical order by
name or into order of height or age?

Finally, try and work out what the sorting network would look like for sorting 10
numbers, or 20, or more. Where do the circles and lines need to go for bigger
sorting networks? How does the number of comparison circles change as you add
more numbers to be sorted?



ysiui4

wom% .

C
oo






